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Centrifugal buoyancy forces in a container rotating about an axis aligned with
gravity lead to mean flows that interact with rotating convection. A model of the
interactions between these flows and the thermal instabilities that occur in weakly
nonlinear rapidly rotating convection is used to estimate when, in terms of external
parameters, centrifugal buoyancy has a substantial influence on thermal convective
instability. The significant physical effects include the direct action of centrifugal
buoyancy on the eddies themselves, the upwards advection of basic-state vertical
shear by the perturbation rolls, and the alteration of the mean thermal stratification
upon which eddies grow by the basic centrifugally induced circulation. It is shown
that the first effect is the most important for common laboratory settings, and can
lead to destabilization of the system at outer radii. Other manifestations of centrifugal
buoyancy include the generation of a positive offset of the mean temperature at the
centre of the cell, and a reduction of this offset by heat fluxes arising from the
centrifugally modified finite-amplitude convective eddies.

1. Introduction
There has been renewed interest in the properties of thermal convection in rapidly

rotating systems. Recent studies include direct numerical simulation (Julien et al.
1996), LES computations (Klinger & Marshall 1995), semi-analytic modelling (Julien
& Knobloch 1998) and a number of experimental studies (Boubnov & Golitsyn 1990;
Fernando, Chen & Boyer 1991; Sakai 1997; Liu & Ecke 1997), amongst many others.
Recent experiments in our own laboratory (Hart & Ohlsen 1999, hereafter referred
to as HO99) have shown that high Rayleigh number rapidly rotating convection
exhibits an offset in the mid-depth mean temperature such that the centrepoint value
is above the average of the bounding horizontal plates. In addition, the mid-depth
eddy variance is higher near the outside of the tank than at the axis (Liu & Ecke
1998; HO99). In an early work on the onset of rotating convection, Koshmeider (1967)
found that axisymmetric rings in a high Prandtl number fluid first appeared near the
outer regions of the cylindrical test cell as the Rayleigh number was increased past its
critical value. What could account for this offset, the rim amplification in supercritical
systems, and rim preference for first appearance of convective instabilities? In the
modelling work and in the interpretation of experiments, centrifugal buoyancy, which
is always present to some degree in rotating convection systems, is usually neglected.

In order to illustrate the interactions between rotating convection and centrifugal
buoyancy-induced motions in the simplest possible analytical model, a weakly non-
linear formulation for convection at rapid rotation rate is developed. Although it
is not rigorously feasible to address turbulent convection experimental results with
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this approach, having a tractable model that can at least suggest trends as the eddy
amplitude increases is useful and appealing. The model is based on the classical
Rayleigh–Bénard situation in which the flow is bounded above and below by two
rigid large-diameter discs maintained at a temperature difference ∆T . In summary,
the questions asked are:

(i) What is the direct centrifugal circulation that is driven by centrifugal buoyancy
acting on the conduction gradient? Does the centrifugal circulation lead to a mean
thermal offset at the midpoint of the layer? To complete the instability analysis, the
centrifugally induced motion needs to be computed to second order in an amplitude
expansion that introduces some nonlinearity to the mean meridional cell.

(ii) As the relative strength of the centrifugal-buoyancy circulation is increased,
when does it first affect the basic instability of rotating convection? Is the system
more or less stable than the canonical conductive situation with a no-motion, vertical-
gravity basic state? What are the physical mechanisms that cause the instability to be
either suppressed or enhanced?

(iii) How does the eddy heat flux through the layer change as centrifugal buoyancy
is added to the problem? Does it compensate or enhance the mean thermal offset in
the layer that is associated with the mean cell?

Question (ii) was considered in the theoretical calculations of Homsy & Hudson
(1971). Their theory predicts changes in the critical Rayleigh number for convection
in the presence of a centrifugal-buoyancy circulation in a finite cylinder of radius L.
This circulation is composed of a self-similar interior and a two-dimensional (non-
self-similar) rim flow. The former stabilizes convection while the latter is found to
be destabilizing. The parameter values for which their asymptotic analysis applies
are somewhat removed from typical terrestrial experimental values. For example, the
Froude number Ω2L/g is assumed large (see further discussion in § 2). In addition,
their stability computation focuses on how the changes to the basic-state thermal
stratification associated with the centrifugally induced mean flow affect convective
instability. They neglect the direct consequences of centrifugal-buoyancy forces arising
from eddy temperature fluctuations. Our analysis indicates that for typical laboratory
settings this assumption is likely to be invalid. A simple physical interpretation for
the destabilization of convection by this direct centrifugal action is offered.

The paper is organized as follows. A model for the mean circulation is introduced
and solved in § 2. Second-order finite-amplitude solutions are obtained that are later
used in the weakly nonlinear stability calculation of § 3. This calculation hinges on
assuming a large Taylor number where the order of the vertical structure problem
is reduced to two, and the nonlinear cascade is much more easily carried out than
if one had to use the full rigid-wall eigenfunctions at each step. In Appendix B it is
shown, asymptotically, how the instabilities of the classical rotating Rayleigh–Bénard
problem with rigid no-slip conditions at the horizontal bounding surfaces approach
the reduced (free-boundary) solutions as the Taylor number Ta is increased. The
results of the weakly nonlinear analysis and their implications are summarized in § 4.

2. The circulation induced by centrifugal buoyancy
Consider the motion between two infinite discs a distance H apart. The discs

are infinitely conducting and are maintained at a temperature difference ∆T . They
are oriented perpendicular to gravity and rotate at rate Ω. The non-dimensional
Boussinesq equations of motion for axisymmetric flow relative to the conductive
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temperature profile are

ut + u · ∇u = −pr + (v2/r + v)Ta+ (∇2u− u/r2)− TaΓr[−z + PrT ], (1a)

vt + u · ∇v = −(uv/r + u) + (∇2v − v/r2), (1b)

wt + u · ∇w = −pz + ∇2w + RaT , (1c)

Pr[Tt + u · ∇T ] = w + ∇2T , (1d)

ur + u/r + wz = 0, (1e)

where the parameters in the above equations are

Ra = gα∆TH3/κν, (2a)

Ta = 4Ω2H3/ν2, (2b)

Pr = ν/κ, (2c)

Γ = α∆T/4. (2d)

The parameters for the infinite disc problem are the Rayleigh, Taylor, Prandtl, and
density deficit numbers, respectively. In a general problem of flow in a finite cylinder
of radius L, additional parameters of importance are the Froude number

F = Ω2L/g,

and the aspect ratio

γ = L/H.

Note that the gravitational buoyancy appears in the last term on the right of (1c),
while the centrifugal buoyancy, acting on the total temperature field, is contained
in the bracketed term on the right of (1a). The neglect of centrifugal buoyancy is
sometimes based on the smallness of F , and results in the omission of the bracketed
term from (1a). Previous studies of rotating stratified flows (e.g. Barcilon & Pedlosky
1967; Homsy & Hudson 1969) have shown that F is not necessarily the correct
parameter to measure the relative significance of centrifugal accelerations.

The scales used to get (1) are H (length), ν/H (u and w), 2ΩH(v), and H2/ν (time).
Here u is the radial velocity, v is the azimuthal velocity, and w is the vertical velocity,
while p is the non-dimensional fluctuating pressure normalized by the mean density
ρ0. In the Boussinesq approximation there is a static pressure field quadratic in r and
linear in z that balances the gravitational and centrifugal accelerations of fluid having
this mean density. In (1) and (2) α is the coefficient of expansion, ν the kinematic
viscosity, H the layer depth, Ω the rotation rate (anti-parallel to the gravity g), κ
the thermal diffusivity, and ∆T the applied temperature difference. The dimensional
temperature field, taken to be statically unstable if ∆T > 0, is given by

T ∗ = ∆T [−z∗/H + PrT (r, z, t)]. (3)

It is first necessary to derive a second-order solution giving the steady mean
centrifugal circulation. Homsy & Hudson (1971) use asymptotic methods to arrive at
a basic centrifugal flow near a sidewall, and this near-wall analysis is restricted by the
condition that γΓPrTa1/4/F � 1. In Koshmeider’s (1967) experiments, representing
normal terrestrial laboratory conditions, although Γ is very small, Pr is very large,
so for his moderately large aspect ratio (10), fairly large Taylor number (100), and
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moderately small Froude number F (∼ 0.1), this parameter group is in fact quite
large (> 100). To find the near-sidewall circulation for typical terrestrial laboratory
conditions where F is small it appears necessary to turn to fully nonlinear two-
dimensional computational simulation. While this is certainly feasible, the present
goal of constructing a relatively simple theoretical model motivates us to concentrate
on the region of a shallow container that is located of order H units in from the
cylinder rim. Simulations of the fully nonlinear problem in a cylinder with various
sidewall thermal conditions show that for typical parameter settings a slow circulation
with a simple self-similar spatial structure can indeed exist over the bulk of the region
(Brummell, Hart & Lopez 1999). Thus we confine our analysis to the inner 80% to
90% of the radius in a cylinder with a large aspect ratio γ. In this region the basic
state has a relatively simple shape which is now obtained.

Following Duncan (1966) and Hudson (1968) a similarity reduction for steady
motion between parallel infinite discs is employed by writing

T = Tc(z), u = rUc(z), v = rVc(z), w = Wc(z), p = Pc(z) + r2TaPb/2. (4)

This transformation of (1) results in

U2
c +WcU

′
c = (V 2

c + Vc)Ta+U ′′c − ΓTa(−z + PrTc)− TaPb, (5a)

UcVc +WcV
′
c = −(UcVc +Uc) + V ′′c , (5b)

PrWcT
′
c = T ′′c +Wc, (5c)

2Uc = −W ′
c. (5d)

The z-dependent part of the pressure field P (z) is passive in this problem, and can
be determined from the vertical balance P ′c = W ′′

c + RaTc −WcW
′
c once the vertical

velocity and temperature fields are found. Equations (5), as well as (1), are subject
to homogeneous boundary conditions on the three velocity components and the
temperature that are applied at z = ±1/2:

Uc = Vc = Wc = Tc = 0 at z = ±1/2. (5e)

The system (5a)–(5d) is seventh order, but the addition of a barotropic radial pressure
field, proportional to the constant Pb, permits the eight boundary conditions to be
imposed.

As we are interested in finding out when centrifugal buoyancy first influences
rotating convection, and this is presumed to happen when the centrifugal circulation
is weak, it is sufficient to obtain the linear solution to (5), along with the first
nonlinear correction to it. In linearizing (5) the physical assumption is that the actual
temperature perturbation PrTc is small compared with that of the conductive thermal
distribution, and that rotation is sufficiently large that Ta > 1. This, along with the
fact that Γ � 1 for typical liquids, guarantees that V , hence U and W , will also be
small. In this situation the linear centrifugal circulation is governed by

U ′′c + VcTa = −ΓTaz, (6a)

Uc = V ′′c , (6b)

T ′′′c = W ′
c = 2Uc = 2V ′′c . (6c)

The barotropic pressure correction Pb is not needed at lowest order because we can
find a solution that is antisymmetric about the origin and so therefore satisfies mass
balance automatically with Pb = 0. Equations (6) describe a mean circulation that
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Figure 1. Characteristics of the linear centrifugal buoyancy circulation. Velocities and temperature,
normalized by Γ , are shown for η = 2, 4, 10 and 20. (a) Normalized radial velocity, curves for η = 2
and 4 are multiplied by 10; (b) normalized vertical velocity, curves for η = 2 and 4 are multiplied
by 10; (c) normalized temperature fluctuation T (see (3)); (d) normalized azimuthal velocity.

consists of radial outflow in the top half of the layer, with inflow in the lower half.
This leads to a vertical circulation in the inner bulk of the layer which is upwards.
Once V and U are determined, T and W are found by simple integration using (6c).
All the fields are proportional to Γ . The solutions are given in Appendix A in terms
of the inverse non-dimensional Ekman layer thickness that we define by

η ≡ (Ta/4)1/4. (7)

Figure 1 illustrates the evolution of linearized flow with increasing η. It agrees
with the numerical solutions of the ODE system (5) by Hudson (1968). At large
Taylor number the radial solution collapses into two Ekman layers attached to the
discs. There is only azimuthal motion in the interior, where the horizontal Coriolis
acceleration acting on the azimuthal velocity balances the radial centrifugal buoyancy
acceleration. For our purposes we note that the thermal perturbation at moderately
large Taylor number responds to the almost uniform vertical velocity in a manner
that generates a parabolic temperature distribution at large η. Therefore, outside the
thin Ekman layers attached to the two plates, the centrifugal circulation for η � 1
takes on a compact form: T is parabolic, W is constant, and V is linear in z. Thus
we can write, with the subscript 1 denoting the linear solution in the interior:

Wc ≡Wc1 = Wc(0), (8a)

Uc ≡ Uc1 = 0, (8b)

Tc ≡ Tc1 = 4Tc(0)(1/4− z2), (8c)

Vc ≡ Vc1 = −Γz. (8d)
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Figure 2. Dependence of the linear solution (a) vertical velocity and (b) core temperature on η at
the mid-plane z = 0.

Figure 2 illustrates how the mid-plane vertical velocity and temperature vary in
general with η. These are given by

Wc(0) = −Γη e−η + 2e−η/2 sin(η/2)− 1

e−η + 2e−η/2 + 1
, (9a)

Tc(0) = − Γ
8η

{−8e−3η/2(cos(η/2) + sin(η/2)) + 2 sin(η)e−η(4 + η2) + (4− η2)e−2η

+8e−η/2(cos(η/2)− sin(η/2))− 4 + η2
}
/{(4 cos2(η/2)− 2)e−η − 1− e−2η}.

(9b)

The dependence of both Wc(0) and Tc(0) on η becomes linear somewhat beyond the
point where the representation (8) starts to be accurate in the interior. In particular,

Tc(0)→ η/8 and Wc(0)→ η, (10)

when η is greater than about 6 (Ta > 5000), giving, via (8a–d), a quite simple
description of the motion. For example, the thermal perturbation scales with PrΓη/8,
relative to the conductive background profile.

The first nonlinear correction to these interior flows is required for the stability
calculation of § 3. Fortunately it is not necessary to iterate about the full solutions given
in Appendix A because the finite-amplitude analysis only needs the interior solution.
The boundary layers (here the Ta−1/4-thick Ekman layers), do not significantly affect
the stability problem when the Taylor number is large. The second-order interior flow
is driven by the nonlinear terms in (5) that are evaluated by substituting from (8).
In the interior these forcings excite second-order motions whose horizontal velocities
are reduced to zero at the wall by attaching the appropriate linear Ekman layers. The
result for the interior motion is

Vc2 = −Γ 2z2 + Γ 2Prη(1/4− z2)/2 + Pb, (11a)

Pb = Γ 2[17/20− 3/2η + 1/η2 + Pr(1/2η − 1/2)], (11b)

Uc2 = Γ 2[η(1− Pr)− 2], (11c)

Wc2 = −2Γ 2[η(1− Pr)− 2]z, (11d)

Tc2 = −Γ 2[η2Pr/6 + η(Pr − 1)/3 + 2/3](z3 − z/4). (11e)



Influence of centrifugal buoyancy on rotating convection 139

To conserve mass in the presence of the depth-independent interior radial motion
described by (11c) an equal amount of fluid must move radially in the opposite
direction in the top and bottom Ekman layers. A radial pressure gradient is needed
to generate this radial motion in the boundary layers. This pressure gradient is in
turn associated with a depth-independent solid rotation that is reflected in the last
term on the right of (11a). The magnitude of the barotropic pressure gradient Pb is
found by matching the Ekman suction just outside the boundary layers at z = ±1/2
to (11d). The Ekman pumping velocity is in part a result of reducing the horizontal
velocities (11a) and (11b) to zero at the walls. However, we also need to include
the antisymmetric contribution to the boundary layer pumping due to the nonlinear
interactions in the first-order boundary layers themselves. This arises because the
linear centrifugal interior solution (8) has a cyclone near the lower boundary and
an anticyclone near the upper plate. The lowest-order boundary layer velocities
associated with these interior motions advects fluid inside the boundary layers in a
manner that generates changes in the net suction. Using the model of Hart (1995),
nonlinear corrections to the lowest-order Ekman suction associated with (8d) are
included in the determination of Pb.

The dominant (at large η) part of the second-order azimuthal velocity derives
from the centrifugal buoyancy arising from the thermal field in (8c). The barotropic
swirl associated with Pb turns out to be fairly small. As opposed to the linear
solution (8) where T and W are about the same size, the second-order solution
is dominated by temperature corrections (11e) at large Taylor number. This will
have important consequences for our stability analysis. Under these conditions the
centrifugally induced thermal field Pr (Tc1 + Tc2) is the most important of the basic-
state variables in altering the criticality condition for convection. While the first-order
solution (8c) has increased static stability near the upper boundary and an equivalent
decrease of static stability near the bottom, the second-order temperature gradient
obtained from (11e) is even in z with a positive value at the midplane (for Pr > 1).

Use of the ‘infinite disc’ solutions given by (8) and (11) in practical applications
assumes that the meridional circulation described above, with uniform upflow, is
passively connected to a return circulation flowing down in a thin boundary layer
at the inevitable sidewall. Previous studies of similar problems (Barcilon & Pedlosky
1967; Homsy & Hudson 1969) suggest that this centrifugal circulation will be closed
at the sidewall with a Stewartson inner layer of thickness E1/3 ≈ η−2/3, where E
is the Ekman number. Instead of (6c), the sidewall thermal field is determined by
∇2T ≈ Trr = −w(z, (r0− r)η2/3), where w is the sidewall boundary layer component of
the vertical velocity. For an insulating sidewall it can be shown that no homogeneous
solution of ∇2T = 0 (which would have roughly equal horizontal and vertical
variations) is required, because the particular solution of Trr ≈ −w satisfies the wall
condition ∂T/∂r = 0 directly. Similar comments apply to the sidewall layers attached
to (11).

3. Finite-amplitude rapidly rotating convection with centrifugal buoyancy
For near-critical flows, the Rayleigh number is written as

Ra = Rac(1 + ε), (12)

where Rac is the critical Rayleigh number for convection in the absence of centrifu-
gal mean flows (basically the free–free critical curve, see Appendix B), and ε � 1
represents the supercriticality. In the presence of centrifugal buoyancy, ε may be
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non-zero at neutrality, reflecting the alteration of the critical curve by centrifugal
effects. An amplitude equation is obtained in the standard way by iterating the partial
differential equation for the fluctuating streamfunction using the weakly nonlinear
cascade procedure. At large Taylor number the disturbance horizontal scales are small
compared with the distance required for significant variation of the basic state (in r).
For example, it is well known that the most unstable convective instabilities under
fast rotation have small horizontal scale (proportional to Ta−1/6H). The centrifugal
circulation is broad, varying at most with scale H . We choose a location (in r) and
consider the fate of rectilinear disturbances on the combined conductive/centrifugal
basic state. A local analysis that takes place in the vicinity of a base radius xs = r is
used. For simplicity, only longitudinal modes (e.g. axisymmetric modes) are studied.
The vertical shear in the azimuthal component of the centrifugal flow (figure 1d) is
expected to force alignment of eddies into the azimuthal (y) direction. The funda-
mental equations are obtained by expressing the local radial and vertical velocities in
terms of the streamfunction ψ: u = −ψz, w = ψx. The azimuthal velocity in the local
y-direction, ν, is also assumed to be a function of the deviation from the base radius,
x, and the height z. The locally rectilinear two-dimensional fully nonlinear model is

Taψzz − Racψxx + ψxxxxxx

= Racεψxx + ∇2{∇2ψt + ψxψxxz − ψzψxxx + wcψxxz + ucψxxx − xΓTaPrTz}
−PrRac ∂

∂x
{Tt + ψxTz − ψzTx + wcTz + ucTx + ψxTcz}

+Ta
∂

∂z
{vt + ψxvz − ψzvx + wcvz + ucvx + ψxvcz − ψzvcx}, (13a)

along with

∇2T + ψx = Pr[Tt + ψxTz − ψzTx + wcTz + ucTx + ψxTcz ], (13b)

∇2v + ψz = [vt + ψxvz − ψzvx + wcvz + ucvx + ψxvcz − ψzvcx ], (13c)

where

∇2 = ∂2/∂z2 + ∂2/∂x2.

Equation (13a) is obtained by combining the two-dimensional vorticity equation (for
the ŷ-vorticity) with the thermal and azimuthal velocity equations. To make the prob-
lem analytically tractable, (13a) has been reduced using the fact that the convection
cells are tall and thin at high Taylor number. One result of this simplification is that
∂2/∂x2 � ∂2/∂z2 so that the operator ∇6ψ, which would normally appear on the left
of (13a), is replaced by ψxxxxxx . The forcing terms on the right of (13a) are similarly
reduced. This narrow-cell approximation effectively reduces the differential order of
the problem in height from sixth to second. As a result, the solutions to equations
(12) are required to satisfy ψ = T = v̄z = 0 at z = ±1/2, where the overbar denotes
the mean-field corrections. This reduction of order enormously simplifies the algebra
involved in explicitly computing the nonlinear cascade. Further commentary on this
approximation appears in Appendix B, which indicates the Taylor number values for
which rigorous equivalence of the full rigid wall and the reduced problems is expected.
Equations (13b) and (13c) are the two-dimensional thermal advection–diffusion equa-
tion and the ŷ-velocity (i.e. the azimuthal velocity) equation respectively. They are
used to find the temperature and azimuthal velocity fields once the streamfunction
is determined from (13a). In (13) the motion has been decomposed into a sum of
the known centrifugal circulation, with subscript c, and the convective motions that
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are to be found (not subscripted). In the following calculation we consider the most
common laboratory situations with Prandtl number greater than unity and focus, for
simplicity, on stationary modes of instability. The convection field is expanded as

ψ = |ε|1/2ψ1 + |ε|ψ2 + |ε|3/2ψ3 . . . , (14)

with similar representations for T and v. The centrifugal circulation is inserted into
the calculation using (3), (8), and (11). It is assumed that Γ ≈ O(|ε|1/2). This order-
of-magnitude relation implies that the centrifugal circulation will interact with the
convection at second order in powers of |ε|1/2. Also important is the observation
that the lowest-order convection mode ψ1 is even in z, and so interacts with the odd
centrifugal V and the even centrifugal W and T to produce an odd ψ2. When this
latter field (and its associated temperature perturbation and swirl velocity) interacts
with the lowest-order centrifugal circulation, and when ψ1 interacts with the second-
order centrifugal mean flow, resonances arise. Removal of these resonances, carried
out in practice by multiplying the order-ε3/2 version of (13a) by ψ1 and integrating
over a wave period in x and across the layer in z, leads to a nonlinear ordinary
differential equation for the amplitude A(t) of the lowest-order solution ψ1.

One twist to this familiar procedure is that the x-integration takes place over a cycle
of the basic eigenfunction, but offset from the origin by an amount xs. This is required
because the horizontal velocity components of the centrifugal mean flows increase
linearly with ‘radius’ x, and different positions may be expected to give different
coefficients in the amplitude equations. Indeed, the linear increase of centrifugal
acceleration with radius, as well as the linear increase of the azimuthal component
of centrifugal buoyancy circulation with radius, are both important physical effects
that must be retained. These x-variations mean that the stability problem is no longer
translation invariant. Thus the amplitude equation will not have the normal Landau
form. In particular, it will have an A2 term in addition to the usual A and A3 terms.

The computations, though algebraically involved, were successfully carried out
using the computer-algebra program maple. The lowest-order problem gives the linear
solution: ψ1 = A(τ) cos (πz) sin (kx), T1 = A(τ) cos (πz) cos (kz)/k, ν1 = −A(τ)π sin (πz)
sin(kx)/k2, where k is the radial wavenumber of the convection unmodified by
centrifugal effects. By Appendix B this is just kf , the free–free critical wavenumber.
The second-order solution is driven by interactions between the linear centrifugal
circulation and the linear convection mode, and by the convection mode with itself.
The resulting fields (ψ2, T2, v2) are quite complicated, though analytically determined.
These are used to compute the interactions between the first-order motions (convection
and centrifugal, e.g. ψ1 +ψc1) and the second-order flows (convection plus centrifugal,
e.g. ψ2 +ψc2). Multiplying these forcing terms, which appear in the order-ε3/2 problem
from (13a), by ψ1/A(τ), and then integrating this over the gap between the plates
and from x = xs to xs + 2π/k, finally yields the amplitude equation for centrifugally
modified longitudinal modes of rotating convection. This amplitude equation is

dA/dτ = {(17.822 sgn(ε) + C1)A+ C2A
2 − (2.227Pr2 − 8.609Ta−1/3)A3}, (15)

where τ ≡ Ta1/3|ε|(10.46Pr − 3.49)t. The numeric constants reflect the values of the
projection integrals in the resonance removal algorithm. The signs are important.
Since we are investigating Pr > 1 and large-Ta situations, it is seen, for example, that
the instability is supercritical. Equation (15) is consistent with the models of Veronis
(1966, 1968) who found steady subcritical instability in pure gravitational rotating
convection, but only at very low Prandtl number.

The coefficients C1 and C2 are discussed in Appendix C. In general they vary
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with the basic radius (measured in units of the layer depth) xs. However, the leading
asymptotic approximation to C1 as Ta→∞ is independent of xs. It is

C1 ≈ Γ 2

|ε| [−0.0809Pr2Ta1/2 + O(Ta1/4)]. (16)

C2 varies with xs in its leading term. The magnitude of C2 is only Γ/
√|ε|Ta1/6. At

large Taylor number the effect of the quadradic term in (15) in thus negligible. In
this situation the dominant terms in (15) are independent of xs (provided the limit
Ta→∞ with xs fixed is taken).

One goal of the analysis is to determine the effect of centrifugal buoyancy on the
linear stability of rotating thermal convection. Equation (15) can now be used to
determine the actual linear critical point, including centrifugal effects, because small-
amplitude neutrality requires 17.822 sgn (ε) + C1 = 0. Using the leading term in (16)
gives

Γ 2Pr2Ta1/2 = 220ε, (17)

which shows that the centrifugal solution makes the motion more stable (ε > 0). In
practice, if we expect an experiment to observe the critical point to within 1%, then
the centrifugal circulation first becomes significant when α∆TPrTa1/4 ≈ 6.

What is the physical origin of the negative sign of (15)? Term by term inspection
reveals that this value is set by vertical advection of the centrifugal temperature
field by the convective eddy. There are two competing contributions. The interaction
between w2 = ψ2x and Tc1z is destabilizing. This is expected as it is known that an
antisymmetric change in the basic stratification (more unstable near one wall, more
stable near the other, see (8c)) renders the linear convective mode more unstable.
However, the interaction between ψ1x and Tc2z does the opposite. Tc2z is stable
(positive) in the interior where the convective vertical velocity is large. On the other
hand where Tc2z is unstable (negative) near the walls, the convective vertical velocity
w goes to zero. Thus the ψ1xTc2z interaction is stabilizing, and turns out to be larger
in magnitude than the destabilizing effect of the ψ2xTc1z interaction. This leads to the
net stabilization expressed in (17). This stabilization of convection by the centrifugal
mean thermal field is in accord with the findings of Homsy & Hudson (1971).

However, although α∆TPrTa1/4 is the parameter that asymptotically measures the
effect of centrifugal buoyancy on rapidly rotating convection when Ta is large, it
may not be the practically relevant one. This is because the asymptotic series for
C1 has a numerically large term multiplying a slightly lower power of Taylor num-
ber. This term (see Appendix C) will dominate in most practical situations where
1� Ta� [6(Pr−1)L/HPr]12. For example, if the apparatus is 10 height units wide,
large Prandtl number disturbances occurring near the rim at xs = 10 will feel this
latter term first unless Ta > O(1018). Thus, a more practical estimate of the linear
neutral curve is obtained by the alternative approximation introduced in Appendix C:

C1 ≈ Γ 2

|ε| x
2
sTa

1/3(Pr − 1)2/2. (18)

In this circumstance the neutrality condition gives

Γ 2(Pr − 1)2Ta1/3 ≈ −35.6ε

x2
s

. (19)

Note that for this slightly restricted Taylor number range the centrifugal motion now
destabilizes the system (ε < 0). Equation (19) suggests that the centrifugal buoyancy
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Figure 3. Sketches of convection in the radius–height plane. (a) The lowest-order ψ1 convection roll
that is unmodified by centrifugal buoyancy. Location of hot (H) and cold (C) thermal perturbations
are shown, along with bold arrows that indicate the directions of the centrifugal buoyancy forces
acting on fluid with these temperatures. (b) The second-order ψ2 field that would arise by driving
associated with the centrifugal buoyancy forces in (a), and the net radial centrifugal buoyancy forces
acting on the T2 fields that occur by advection of the statically unstable basic conductive state via
ψ2. (c) The component of the circulation induced by the centrifugal buoyancy forces in (b).

will first influence convection near the rim of the apparatus, and a 1% shift in the
neutral curve will arise when ε = 0.01, or when α∆T (Pr − 1)Ta1/6L/H ≈ 2.3. For
example, if the aspect ratio and the Prandtl number are both about 10, and Ta = 106,
then centrifugal buoyancy will affect the convection if α∆T >≈ 0.002. In a silicone oil
where α = 0.001, a temperature difference of a degree or two will lead to recognizable
centrifugal effects on the onset of convection. In Koshmeider’s (1967) experiments
α∆T (Pr − 1)Ta1/6L/H ≈ 40. Although his Ta ∼ 80 is probably not sufficient to
justify use of the reduced form (13a), nor the use of the asymptotic forms (8) and (11)
for the centrifugal circulation, this theory suggests a possible mechanism to explain
his observations of first appearance of axisymmetric instabilities near the rim of the
container as ∆T is raised.

What physically causes this theoretical destabilization? Figure 3(a) illustrates the
lowest-order roll circulation. It is unaffected by centrifugal buoyancy. The upwelling
increases the mid-plane temperature between the two rolls shown via vertical advection
of the conductive gradient. There is a radial (x-directed) buoyancy force that now acts
on this temperature distribution, leading to the second-order circulation as sketched
in figure 3(b). This circulation is orthogonal to, or does not reinforce, the basic cells in
(a). Its magnitude scales with xsΓPrTa

1/6. Centrifugal buoyancy acts on the second-
order temperature field generated by vertical advection within these cells, leading
to a third-order circulation (figure 3b) that does project onto (i.e. is resonant with)
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Figure 4. Characteristic eddy heat fluxes and the forced third-order mean temperature field for
ε = 0.1, Γ = 0.001, Ta = 108, Pr = 10, xs = 4.

and indeed reinforces the basic cells of figure 3(a). The third-order cell amplitude
scales with (xsΓPr)

2Ta1/3. This net fortification leads to a reduction in the critical
Rayleigh number that is proportional to x2

sΓ
2Pr2Ta1/3. In (19), the factor Pr − 1

appears instead of Pr alone because eddy vertical advection of centrifugal azimuthal
velocity leads to Coriolis accelerations that compete with the above mechanism. The
appearance of unity in this factor is a result of the special spatial structures associated
with the lowest order free–free solutions. For rigid boundaries this factor would be
different, but for large Pr (19) is likely to remain accurate. It is useful to note that
this effect is relatively independent of the mean centrifugal circulation (8) and (11),
since it reflects the direct action on the eddies which in our ordering of the problem
feel the mean flow at second and higher orders. For example, the first action takes
the lowest-order pure gravitational rolls and perturbs them according to figure 3(b).

Using the analytic forms generated in the analysis, it is possible to calculate
the contributions to the mean (x-averaged over 1 cell period at radius xs) heat
flux wT . These may be divided into the purely convective second-order eddy
part w1T1, uninfluenced by centrifugal buoyancy, and the third-order term F3 =

w2T1 + w1T2 +Wc1T2 +Wc2Tc1 +Wc1Tc2, which drives a third-order mean tempera-
ture field via T3zz = PrF3z −Wc3. The terms that make up this latter flux represent
self-interactions in the eddy field, products of the centrifugal circulation and the
nonlinear mean thermal field, and interactions between the centrifugal circulation
and itself. For a wide range of parameters (all that were tested), all five terms are
negative for z < 0 and positive for z > 0. For ε ≈ 0.1, Γ 6≈ 0.001, Pr = O(1–20),
103 < Ta < 108, being typical experimental values, the second term in F is the biggest.
This indicates that unless the Taylor number or Γ are unusually large, the heat flux
is dominated by the convective eddies. A typical distribution of the flux and the
induced third-order temperature is illustrated in figure 4. Note that the lowest-order
pure gravitational eddies will heat the top of the layer and cool the bottom, but
will not alter the mid-plane temperature. The first convective–centrifugal buoyancy
interaction will cool the mid-plane mean temperature and thus well compete with
the result from § 2 that the direct action of centrifugal buoyancy on the conductive
thermal field will be to produce a heating of the mid-plane.

Combining all these effects, and using an equilibration amplitude that is obtained
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Figure 5. Mean (eddy-cell-averaged) temperature (not including the basic conductive gradient) for
xs = 1, Pr = 10, and ε = 0.1. (a) Γ = 0.0001, Ta = 108; (b) Γ = 0.001, Ta = 106; (c) Γ = 0.001,
Ta = 108; (d) Γ = 0.005, Ta = 108.

from (15) with Ȧ = C2 = 0, the central core temperature at large Taylor number is
given by

T (x = z = 0) = 0.088ΓTa1/4 − 0.286ΓTa1/4ε/P r − 0.01Γ 3Pr(Pr − 1)Ta1/2

+0.00092Pr2Γ 3Ta3/4 + Γ 3Pr2Ta1/2/192. (20)

The terms independent of ε represent offsets generated by the weakly nonlinear mean
meridional centrifugal flow by itself. The last term in (20), which is not included
in figure 4, gives the contribution due to advection of the conductive basic-state
gradient by Wc3. This latter quantity is obtained by iterating the interior centrifugal
circulation once again following the method used to get (8) and (11). Equation (20)
illustrates explicitly the tendency for centrifugal buoyancy to directly induce a thermal
offset at the cell mid-point, and for convection, via the second term on the right, to
decrease this positive offset. Finally, figure 5 shows several typical distributions of
mean temperature near the axis for moderate Prandtl number. The role of centrifugal
buoyancy in contributing to the apparent asymmetry about the mid-plane is clearly
evident as Γ or Ta get large.

4. Conclusions
This paper illustrates several aspects of how centrifugal buoyancy influences rapidly

rotating convection between parallel differentially heated plates.
1. Centrifugal buoyancy acting on the linear (statically unstable) conductive tem-

perature profile generates a ‘centrifugal mean circulation’. This consists of a single
meridional cell with core upwelling, outflow of cold fluid in the top half of the layer,
inflow in the bottom half, and an asymmetric (in the weakly nonlinear case) thermal
profile. This direct circulation is accompanied by a positive thermal offset at the
centre of the layer. Such offsets have been observed in experiments (Liu & Ecke 1998;
HO99).

2. The analysis of the stability problem for rotating convection between parallel
discs in the presence of mean circulations induced by centrifugal buoyancy shows
that:
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(a) The lowest-order centrifugal mean thermal field, which enhances the unstable
basic-state conductive gradient near the upper plate and reduces it near the lower
plate, tends to make the combined mean state more unstable.

(b) The second-order (slightly nonlinear) centrifugal mean thermal field, which is
statically stable in the interior, tends to make the whole system more stable.
The detailed calculation shows that (b) is more important, so the lowest vertical
critical mode of stationary convection is stabilized by the centrifugal circulation. At
extremely large Taylor number this is the dominant physical effect. In this situation the
convection will be stabilized by centrifugal buoyancy, and the degree of stabilization
will be independent of radius. This result is similar to that obtained by Homsy &
Hudson (1971) for the region away from the sidewall of their model configuration.

However, if the Taylor number is in the range 1� Ta� [6(Pr−1)L/HPr]12, then
the stabilization of convection by the vertical thermal gradient in the centrifugal cell
is not the dominant effect. Rather, at the outer radii of a finite container, the direct
action of centrifugal buoyancy on the convective eddies themselves will destabilize
the convection in the sense that the critical Rayleigh number will be lowered. It is
suggested that this mechanism may be an alternative to that proposed to act near
the rim of a high Froude number system by Homsy & Hudson (1971), whose anal-
ysis concentrates on the interaction of convection with centrifugally modified mean
temperature fields. They neglect the direct centrifugal buoyancy forces within the con-
vection perturbations. Our destabilization mechanism results in a slow modulation of
the eddy heat flux with radius which increases with x2

s = r2, along with a similar radial
increase of the basic eddy amplitude and thermal variance. Measurements of thermal
variances in turbulent convection (Liu & Ecke 1998; HO99) show enhancement of
these variables as a temperature probe is moved from the axis towards the sidewall
that suggest such spatial modulation.

3. Analysis of the eddy correlations shows that those heat fluxes due to the inter-
action of the convection with the centrifugal buoyancy tend to carry heat out of the
centre of the layer towards the horizontal plates. Therefore convection may moderate
the positive thermal offset generated by the lowest-order centrifugal circulation itself
through its core upwelling. It has been noted by HO99 that the direct centrifugal offset
(e.g. (8c) or figure 2(b), calculated with a suitably renormalized basic gradient ap-
propriate for strongly turbulent convection) overestimates that observed in turbulent
rotating convection. Although suggested by a weakly nonlinear theory and perhaps
not applicable to strongly supercritical convection, the tendency for finite-amplitude
convection to reduce the mid-plane temperature offers a possible explanation.

As already, noted, laboratory experiments may exceed the threshold for centrifugal
influence in the linear problem, C ≡ α∆T Pr Ta1/6L/H ≈ O(1). This is certainly true
in Koshmeider’s (1967) experiments. However these may not have had large enough
Taylor number for the present analysis to apply. In our own unit-aspect-ratio highly
turbulent experiments with a low-viscosity silicone oil, we have α∆T ≈ 0.03, P r ≈ 10,
and Ta ≈ 108, so that the above parameter is about 5. Although several features such
as increased eddy amplitudes at large radii are common to both existing experiments
and this model, it would be interesting to conduct experiments that better meet
the constraints of the theory, namely moderate supercriticality, high Taylor number,
large aspect ratio. It is probably difficult to get a large Taylor number if the Pandtl
number is large. An alternative and potentially fruitful approach would be to carry
out two-dimensional computational simultations in a high-aspect-ratio geometry at
modest Prandtl number. Diagnosis of the resulting flow fields should be able to
distinguish between the direct action of eddy centrifugal-buoyancy forces, proposed
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here as a destabilizing effect (i.e. an eddy energy source), and other mechanisms,
such as the interaction between convective eddies and the mean centrifugally induced
stratification changes near the rim.
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and by support from NASA through its Microgravity Research Program, grant
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Appendix A. The linear centrifugal-buoyancy circulation
The formulae below give the solutions to the lowest-order (linear) problem (6) with

homogeneous boundary conditions on all four variables at z = ±1/2. In the following
let θ±m ≡ mη/2± ηz:

Vc1 = −Γz − Γ −eθ−3 cos θ+1 + eθ−1 cos θ−1 + eθ+3 cos θ−1 − eθ+1 cos θ+1

4eη cos η − 2e2η − 2
, (A 1)

Uc1 = Γη2−eθ−1 sin θ−1 + eθ+1 sin θ+1 − eθ−3 sin θ+1 + eθ+3 sin θ−1

1− 2eη cos η + e2η
, (A 2)

Wc1 = Γη{1 + eθ+3 cos θ−1 − eθ+1 cos θ+1 − eθ−1 cos θ−1 + eθ+3 sin θ−1 + eθ−3 sin θ+1

+eθ+1 sin θ+1 + eθ−1 sin θ−1 + eθ−3 cos θ+1− 2eη sin η − e2η}/{2eη cos η − e2η − 1},
(A 3)

Tc1 = Γ {−4− 8eη sin η + 4eθ−3 (sin θ+1 − cos θ+1) + 4eθ−1 (sin θ−1 + cos θ−1)

+4eθ+3(sin θ−1 − cos θ−1) + 4eθ+1(sin θ+1 + cos θ+1) + 4e2η − 4η2z2 + η2

+8η2(z2 − η2/4)eη sin η + 4η2e2η(z2 − 1/4)}/{16ηeη cos η − 8ηe2η − 8η}. (A 4)

Appendix B. Asymptotic analysis of the rigid-boundary linear stability
problem

The goal of this paper is to calculate a weakly nonlinear amplitude equation for
rapidly rotating thermal instabilities in the presence of the centrifugally induced
circulation described above. In order to simplify the calculations to the point where
analytical methods are sufficient, it is useful to demonstrate how the normal rigid wall
rotating convection problem asymptotically approaches a simpler problem governed
by a vertical-structure differential equation with reduced order. In the paragraphs
below, asymptotic relations are derived that show how the boundary layers that arise
near z = ±1/2 in the rigid wall problem actually affect the neutral curves. By direct
analysis Chandrasekhar (1961) shows that the rigid-boundary linear critical curve
runs below and seemingly parallel to the classical free-boundary neutral curve for
large Ta (values up to 1010 were shown). As Ta→ ∞ the boundary layer correction
appears to vanish so the rigid–rigid and free–free critical curves come together. Julien
& Knobloch (1998) argue that under such circumstances the requisite boundary
layers near rigid plates must be passive, and the interior motions will behave as
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if the boundaries are free. It is useful to indicate how fast this happens. We do
this by analysing the standard rotating convection stability problem for stationary
two-dimensional perturbations by explicitly breaking up the solution into interior
and boundary layer parts and by comparing solutions obtained with full rigid-wall
boundary conditions with solutions from reduced (essentially free–free) boundary
conditions.

Linear instabilities of gravitational convection are formally governed by the equa-
tion obtained by setting the right-hand side of (13a) to zero and returning to the full
diffusion operator:

∇6ψ − Raψxx + Taψzz = 0, (B 1)

where ψ is the streamfunction for perturbations in the (x, z)-plane, with x chosen
arbitrarily here to increase in the r-direction. Substituting ψ = G(z) sin kx leads to the
standard sixth-order ODE, with D = d/dz, for the linear eigenfunctions of rotating
convection:

D6G− 3k2 D4G+ 3k4 D2G− k6G+ k2RaG+ TaD2G = 0. (B 2)

(bl) (bl) (int) (int) (bl, int)

Assuming Ra and k scale approximately with the free–free values Ta2/3 and Ta1/6

respectively, which will be the case if rigid walls have a small effect on the free–free
neutral curve, then the balances shown under (B 2) permit calculation of the interior
(int) and boundary layer (bl) motions with residual relative errors of order Ta−1/3.

The solution, looking at the lowest vertical mode, and assigning unit amplitude to
the interior streamfunction, is given by

G(z) = cos lz + b e−η(1+3k2/
√
Ta)(z+1/2) sin η(1− 3k2/

√
Ta)(z + 1/2)

+ce−η(1+3k2/
√
Ta)(z+1/2) cos η(1− 3k2/

√
Ta)(z + 1/2), (B 3)

where b and c are constants to be determined, and

l =

√
Rak2 − k6

Ta
. (B 4)

For compactness of presentation only the boundary layer at the lower plate is
included explicitly in (B 3). Since the streamfunction is even, the structure near the
upper plate is easily obtained from that shown above. The thermal perturbation is
T = [F(z)+d exp (−k(z+1/2))] cos (kx), where F(z) is found by solving, to at least the
same level of accuracy as above, the linearized thermal equation ∇2T = −ψx using
(B 3). Here d is a last undetermined constant. The total solution consists of an order-
one varying interior (since l is order one), with modified Ekman layers and a Ta−1/6

thermal layer lying near the plates. The three rigid-wall infinitely conducting boundary
conditions G = G′ = T = 0 at z = −1/2 serve to determine b, c, and d. Integration of
the uniformly valid version of the vorticity equation ∇4ψ+RaTx−Tavz = 0 across the
layer, and applying the boundary condition v(±1/2) = 0, provides a fourth constraint.
Using the thermal equation to relate the integral of T to G, and to the wall gradients
of temperature, this procedure yields, with relative error of order Ta−1/4,

G′′(−1/2) + (Ra− k4) sin (l/2)/l + RaDT (−1/2)/k = 0. (B 5)
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Figure 6. Asymptotic rigid-boundary critical Rayleigh number and wavenumber, normalized by
the asymptotic free boundary values.

Using (B 3), the related vertical structure function for T , and the expressions for
b, c, and d, we obtain a transcendental equation χ(l, Ra, Ta, k) = 0 for the neutral
curve. Solution of this eigenvalue problem using (B 4) is carried out with the symbolic
manipulator maple in the limit Ta→∞. The dominant terms are

Rac = Raf[1− 1.107Ta−1/12 + 0.00001Ta−1/6 + 5.847Ta−1/4 + 4.549Ta−1/3 . . .],

(B 6)

kc = kf[1− 0.2768Ta−1/12 + 0.9966Ta−1/6 + 3.0011Ta−1/4 . . .], (B 7)

where

Raf = 3π4/32−2/3Ta2/3, (B 8)

kf = π1/32−1/6Ta1/6 (B 9)

are the critical points for the pure interior-only problem from (B 2) in which the
single condition G = 0 is imposed on the first term in (B 3). These latter values, as
well as the associated eigenfunction ψ = cos (lz) → cos (πz), are in fact equivalent
to the asymptotic (large-Ta) results for the free–free boundary problem. Equations
(B 6) and (B 7) show that the rigid boundary case is more unstable than the free case.
This happens because the phasing is such that Ekman pumping adds constructively
to the interior vertical velocity, thereby permitting the rigid mode to more effectively
extract energy out of the basic conductive state than can the free mode. The rigid
case approaches the free case slowly (like Ta−1/12), and at moderate Taylor number
some of the other terms in (B 6) and (B 7) are numerically significant. The result of
the asymptotic analysis is shown graphically in figure 6. Over the entire range of Ta
in figure 6 the differences between the full and reduced solutions are less than 15%,
and asymptotically go to zero as Ta→∞.

The bottom line is that the use of the interior balance in (B 2), along with the
reduced ψ = 0 boundary conditions for the various modes of the nonlinear analysis,
will be accurate at large enough Taylor number. This reduction of order and the
simplicity of the basic vertical eigenfunction (compare the first term of B 3 with the
whole thing) is important in making the nonlinear problem tractable.
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n = xsTa
1/6 B2 B1 B0

1 3.8 −7.13 −0.83
2 11.0 −20.5 5.36
4 21.9 −43.2 17.1

10 74.5 −147.4 68.7
20 247 −495 242
40 930 −1 861 926

100 5 380 −10 760 5 375
200 20 959 −41 918 20 953
400 82 855 −165 709 82 850

1000 514 521 −2∗514 521 514 520
2000 2 055 189 −2∗2 055 189 2 055 188

Table 1. Coefficients for the curly bracket term in (C 1).

Appendix C. Coefficients for the amplitude equation
Both coefficients C1 and C2 depend on xs. A few values C2 are illustrated below:

C2 =
Γ√|ε|Ta1/6

[0.49Pr − 7.34] at xs = 10Ta−1/6,

C2 =
Γ√|ε|Ta1/6

[0.99Pr − 5.40] at xs = 20Ta−1/6,

C2 =
Γ√|ε|T 1/6

a

[−0.41Pr + 7.43] at xs = 100Ta−1/6.

The numeric coefficients fluctuate periodically through order-one positive and negative
values as xs increases. When the Taylor number is large this coefficient is small.
C1 is a function of xs too. Its general form is

C1 = −0.0809Pr2Ta1/2 + (a1Pr − a2Pr
2)Ta1/4 − (2.61Pr2 + 0.422Pr)Ta1/6

+{B2Pr
2 + B1Pr + B0}+ O(Ta−1/6). (C 1)

The values associated with the B’s turn out to be more important than the a’s
because they grow with radius while the a’s do not. Their dependence on radius is
shown in table 1. Recall that xs measures the base container radius for the local
longitudinal rolls in units of layer thickness H . Inspection of this table reveals that a
good approximation to the curly brackets of (C 1) for large n is obtained by writing,
{ } ≈ n2(Pr − 1)2/2 = x2

sTa
1/3(Pr − 1)2/2, so that

C1 ≈ Γ 2

|ε|
[−0.0809Pr2Ta1/2 + x2

sTa
1/3(Pr − 1)2/2 + O(Ta1/4)

]
. (C 2)

When C1 = 0 the physical effects represented by the first two terms on the right
counteract each other. This occurs when Ta ≈ [6(Pr − 1)xs/P r]

12, which takes the
value [6(Pr − 1)L/HPr]12 at the outer edge of the cylinder.

The a-terms in C1 come from a peculiarity of our averaging procedure. They
originate from resonances associated with the local average or projection of the
second-order centrifugal buoyancy term onto the basic eigenfunction: xψ1(x, z)Tc2z(z).
Without the radius factor x, this would average (over an x-cycle) to zero. But as x is
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allowed to vary over the average, which starts at xs, a non-zero result ensues. This
may or may not be physically important. Resolution of its significance would require
relaxation of the local rectilinear approximation. The terms retained are believed to
capture the dominant physical effects.
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